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Abstract. A quasi-Newton method involving a diagonal
guess orbital hessian with iterative updates has been
proposed recently by Almlof for the optimization of
closed shell self-consistent field (SCF) wavefunctions.
The technique is extended in the present work to more
general wavefunctions, ranging from open shell SCF
through multiconfigurational SCF. A number of exam-
ples are presented to show that convergence for closed
and open shell SCF rivals conventional direct inversion
in the iterative subspace (DIIS). For multiconfiguration-
al SCF wavefunctions, the method presented here
requires more iterations than an exact second order
program, but since each iteration is substantially faster,
leads to a more efficient overall program.
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1 Introduction

Most quantum chemistry calculations start from Har-
tree-Fock (HF) self-consistent field (SCF), generalized
valence bond (GVB), or multiconfigurational self-con-
sistent field (MCSCF) wavefunctions, which serve as
starting points for obtaining more accurate wavefunc-
tions that include electron correlation by means of
configuration interaction, cluster expansions, or pertur-
bation theory.

Optimization of molecular orbitals expanded in a
basis of atomic orbitals is the common step that is re-
quired to obtain all of these wavefunctions. The stan-
dard scheme for SCF orbital optimization is based on
an iterative procedure involving diagonalization of the
Fock matrix [1] normally supplemented today by a
method referred to as direct inversion in the iterative
subspace (DIIS) [2-4]. An alternative approach with an
almost equally long history [5-16] is a second order
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method involving Newton-Raphson optimization. This
method uses an exponential parameterization to obtain
orbital rotation angles, and requires calculation of first
and second derivatives of the energy with respect to
these orbital coordinates (orbital gradient and orbital
hessian). This method has not been very popular for
optimization of HF wavefunctions, due to the high cost
of computing the orbital hessian (which requires an
integral transformation in the original formulations
[8, 9]), as well as the large size of the hessian matrices
which are difficult to store even for average size mo-
lecular systems. A solution to both problems was pre-
sented by Fischer and Almlof [12], who suggested the
use of a quasi-Newton approach using an approximate
hessian to avoid its accurate computation, and also
devised a very efficient recursive algorithm which allows
the updating of the inverse hessian multiplied by gra-
dient vectors without actual storage of the hessian
matrix. Another solution to both problems has been
given by Shepard [13], but the accurate computation
of the hessian requires additional builds of Fock-like
matrices, and thus a considerable increase in computa-
tional cost [16].

The purpose of this paper is to demonstrate how an
approximate second order method based on the hessian
update procedure suggested by Fischer and Almlof can
be used to perform efficient orbital optimizations, not
only for closed shell restricted Hartree-Fock (RHF)
[12], but also for other types of wavefunctions, namely
restricted open shell Hartree-Fock (ROHF), GVB, and
MCSCEF. These procedures have been implemented in
the electronic structure code GAMESS [17], and are the
present default convergence methods.

2 Closed shell RHF wavefunctions

Second order SCF (SOSCF) methods for RHF wave-
functions have been described in previous papers [5-16].
Here, we outline this method and present some details of
our implementation of it.

The closed shell RHF wavefunction can be repre-
sented as an anti-symmetrized product of doubly occu-
pied orbitals ¥;:



Weir = AU (D01(2) -y p N = D (V)] (1)

where N is the number of electrons. The electronic
energy is given by

occ occ

E=Y 2hi+Y (2 —Ky) (1.2)
where A = [Y,(Dh(1)¢;(1)dN (1.3)
Jij = (iiljj) = [[ (DY) ;5 (DY, (2)avidrs - (1.4)
Ky = (ijlif) = [[v,(Oy,2) ;5 v,(Dy(2)anidra. (1.5)

The variational condition leads to the familiar HF
equations

Fy, = e,

where F is the Fock operator:

(1.6)

oce

F=h+) (23, -K). (1.7)

The standard method of solution of the HF equations
includes constructing the Fock matrix in the atomic
orbital (AO) basis, transforming it to the current mo-
lecular orbital (MO) basis, and diagonalizing. Diago-
nalization gives new MOs which are used for the next
iteration, and this is repeated until convergence.

In the second order method based on exponential
parametrization [8, 9], the new set of orbitals is obtained
from the old by an orthogonal transformation repre-
sented as an exponential of an antisymmetric matrix:

Crew = Co1dU = Cypq eXP(A)> (18)

where exp(A) =T+A+1/2A% +... (1.9)
0 x

A_[_X 0]. (1.10)

The x;, elements are the L = n,. X n,,, independent
rotational parameters, each corresponding to a rotation
between occupied orbital i and virtual orbital a. The
variational condition is:

OF
axia B
where g;, are the elements of the orbital gradient of the

energy. This equation can be solved using the Newton-
Raphson method:

Jia =0 (1.11)

8, =X, —x, =B '-g, (1.12)

where 9, is the displacement vector, g, is the gradient
vector, and B,, is the hessian matrix on iteration 7.
Using the Newton-Raphson method in a fixed coor-
dinate system requires very time-consuming computa-
tions of the first and second derivatives of the energy
with respect to the parameters x;,. The first derivatives
B—E can be calculated exactly (see Ref. [14] for exact
formulae), but the calculations involve many matrix
operations. Our implementation, like most others, does
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not use fixed coordinates. Instead, we set the parameters
X;, to zero at the beginning of each iteration and use the
new displacement J, = X, to update the orbital coef-
ficient matrix obtained on the previous iteration
C,+1 = C, exp(Ay41). This gives much simpler expres-
sions for the derivatives at x = 0. For example, the first
derivative [8] is simply:

O
gza*ax

1a\x;,=0

= 4(i|Fly,) = 4F, (1.13)

where Fj, is an element of the Fock matrix transformed
into the MO basis. The orthogonal transformation
matrix U = exp(A) is obtained by truncating the expan-
sion to first order:

exp(A) =1+ A (1.14)

followed by a Schmidt orthogonalization. We have
found that addition of the second order term 1/2A% does
not lead to any decrease in the total number of
iterations. Other more exact expressions for the rotation
matrix, such as the Klein-Cayley formula

U=(I+A/2)/(1-A/2)

have not been considered due to our desire to minimize
the number of floating point operations to obtain U.

The second derivative expressions at x = 0 [8] include
not only Fock matrix elements, but also two-electron
integrals in the MO basis. To avoid the expensive inte-
gral transformation required to compute the exact hes-
sian matrix, we follow Fischer and Alml6f [12] and start
with an approximate diagonal hessian, which thus can
be inverted trivially. The inverse orbital hessian is then
updated using the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) updating formula [18] via the recursive update
recipe given in Ref. [12]. The greatest advantage of this
procedure is memory savings, since the hessian matrix
itself does not need to be kept in memory. The recursive
algorithm requires storage of three vectors of size L
(where L is the number of rotational parameters) from
each previous iteration. We write these vectors to disk
and read them on each iteration to update hessian
related information.

Our experience shows that the choice of the approx-
imate initial diagonal hessian is very important to pro-
vide convergence for this method. The use of a unit
matrix for this purpose is certainly not satisfactory.
Consideration of the general formula for the RHF
orbital hessian [8] (i,j = occupied orbitals; a,b = virtual
orbitals)

Buags = 4Fupyy — 4Fydap + 44(ialbj) — (jalib) — (ablij)]
(1.16)

suggests that the use of orbitals which are approximately
canonical will increase the diagonal dominance of the
hessian. Since our Huckel guess orbitals [17] are not
nearly canonical, we diagonalize the Fock matrix on the
first iteration, and on the next cycle take as our
approximate initial diagonal hessian

Bia,ia = 4Fzm - 4El = 4(8a - Si)

(1.15)

(1.17)
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Table 1. Comparison of sec-

ond order SCF and DIIS Molecule  No. qf basis No. of iterations SCF time (s) Fock time (s)
methods® functions

DIIS SOSCF  DIIS SOSCF  DIIS SOSCF
% The calculations were per- ]
formed on a 67 MHz IBM SpP2  Glycine 85 12 12 3.1 0.8 355 Same as DIIS
thin node running sequential]y. Thymlne 149 13 13 17.4 5.7 2,243 Same as DIIS
The basis set is 6-31 G(d), and  Nicotine 208 13 12 48.4 14.1 6,361 6,123
none of the molecules possesses  Luciferin 294 14 15 153.6 51.1 13,733 14,574
any symmetry. All runs used Cyclic AMP 356 14 13 275.4 77.4 24,262 23,647
direct SCF techniques
Table 2. Number of SCF iterations during geometry optimization of glycine molecule
Geometry step 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
DIIS 13 11 11 10 10 8 8 8 8 8 9 9 7 7 7 6
SOSCF 13 10 10 9 8 7 7 7 6 7 8 8 6 6 5 5

Fig. 1. Summary of approximate second order SCF algorithm, with
FLOP count®

STEP COST

0. Estimate B™", on first iteration® 2L

1. Obtain gradient in MO basis® 2n,.. N? + 2LN

2. Apply BFGS updates to obtain the 16L + 20(n;.
orbital rotation parameters x = B~'g rer—2)L

3. Generate transformation U =1+ A from x negligible

4. Schmidt orthogonalize U OIN° + N2

5. Rotate orbitals, C,; = C,U 2N3

% N is the size of the AO basis, L is the number of independent
orbital rotation parameters, and n,,, is the number of iterations
since SOSCF was initiated. ® The costs of these steps are wave-
function dependent, and values shown are for RHF computations

since the two-electron integral terms from (1.16) are
much smaller than the Fock contributions. At subse-
quent geometries, it suffices to use orbital energies from
the previous geometry to form the initial diagonal
orbital hessian.

The entire orbital update algorithm is shown in
Fig. 1. We begin the algorithm when the maximum
orbital gradient element falls below a threshold, nor-
mally 0.25. Our Huckel guess orbitals [17] normally meet
this criterion after the conventional diagonalization on
the first iteration, but if the starting orbitals are very
poor we rely on conventional extrapolation to bring us
within the radius of convergence of our SOSCF method.
The SCF process is considered converged when the
maximum orbital gradient component is one microhar-
tree. This is roughly equivalent to 10> convergence of
the density matrix. Since applications such as nuclear
gradient and hessian computation, perturbation theory,
and Koopmans’ theorem require canonical orbitals, we
always perform one Fock matrix diagonalization after
final convergence.

The convergence of this approximate second order
method is not, of course, quadratic because of the var-
ious approximations used, but it is superlinear and is
comparable with that of the DIIS method [2]. However,
the number of computations is less for the approximate

second order method than for DIIS. The floating point
operation (FLOP) count of our RHF DIIS implemen-
tation [17] is roughly 17 N3, from seven matrix multi-
plies (14 N3) and one diagonalization (10/3 N*). Taking
noec = 1/3 N as typical of RHF calculations, Fig. 1
shows that the approximate SOSCF orbital improve-
ment requires roughly 5N° FLOPs.

Table 1 shows several examples of organic molecules
converged with the conventional Fock diagonalization
method + DIIS convergence accelerator, compared to
the SOSCF method descirbed above. The two final
columns show the times needed for computation of in-
tegrals and construction of the Fock matrix in direct
mode. As can be seen from the table, the number of
iterations is practically the same for both methods
(%1 iteration), but the time required to solve the HF
equations is about 3 times less for SOSCF than for DIIS.
This is not very important for a serial run, since much
more time is required to calculate integrals and form
Fock matrices than to solve the HF equations. However,
if integrals are calculated in parallel (assuming perfect
parallelization of the integrals and Fock build), then the
smaller time of the sequential solve step gives better re-
sults for speedups. For the last example of cyclic AMP,
the theoretical speedup on 32 nodes,

DIIS: (24,262 +275)/(24,262/32 + 275) = 23.7
SOSCF: (23,647 +77)/(23,647/32 + 77) = 29.0

is much better in the case of SOSCF.

Another advantage of using this SOSCF method is a
decreased number of iterations during geometry opti-
mizations. Table 2 presents the number of SCF itera-
tions on each geometry optimization step for glycine.
The number of iterations is consistently 1-2 iterations
less for SOSCF on all subsequent geometries. This saves
a total of 18 iterations during this optimization run.

3 High spin open shell ROHF wavefunctions

The high spin coupled restricted open shell HF wave-
function can be written as:
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Table 3. Comparison of differ-
ent GVB orbital optimization

methods (number of iterations)

Molecule OCBSE GVB-DIIS* SOSCF
Methylene, CH,, 1P® 10 11 10
Bicyclobutane, C4Hg, 1P Does not converge 23 18
Disilane, SiHg, 1P Does not converge Does not converge 10
Ethylene, C,Hy, 2P 12 11 11
Stannobenzene, 3P 46 Does not converge 31
Cyclic N,O,, 5P 23 Does not converge 14

#These results are given for Single Fock Operator + DIIS methods implemented in GAMESS
(single-pair GVB-DIIS* and multi-pair GVB-DIIS?)
bThe notation nP indicates the number of GVB pairs used

A [WIEI‘//ZJZ """ le*M@N*M"ﬁN*M“r]
...... le] = A I:\Pcare\Pale] (2])

where N — M is the number of doubly occupied (closed
shell) orbitals, and M is the number of singly occupied
(open shell) orbitals.

Previously, high spin ROHF wavefunctions were
optimized in GAMESS by diagonalizing a single Fock
matrix in the MO basis, constructed as follows [17]:

Yronr =

F Fy (Fy+Fp)/2
Frour = Fg £ F, (2.2)
(F;( + F[;)/2 F, Fy

where F, and Fg are alpha and beta Fock matrices
transformed to the MO basis. F>, F], and F are doubly,
singly, and zero occupied diagonal blocks:

Fy = AoFy + BooFy (2.3a)
Fi = AooFy + BooFp (2.3b)
Fo = AwFy + By Fp. (2.3¢)

The best convergence rate is found with Roothaan’s A
and B canonicalization coefficients [19].

To use our quasi-Newton approach for ROHF
wavefunctions, we construct the orbital gradient vector
from the off-diagonal blocks of the above Fock matrix:

if i = doubly occupied,
k = singly occupied orbital (2.4a)
if i = doubly occupied,

gir = F,f

a = virtual orbital (2.4b)
F if k = singly occupied,
a = virtual orbital. (2.4c)

As in the case of RHF, we diagonalize the above Fock
matrix on the very first iteration and use its eigenvalues ¢
to approximate the initial diagonal hessian:

B[k‘ik =& — & (2521)
Bia,ia =& — & (25b)
Bka,ka =& — & (25C)

where the index i denotes doubly occupied, k singly
occupied, and a virtual orbitals. The rest of our
implementation is the same as for closed shell RHF
wavefunctions.

4 GVB and low spin ROHF wavefunctions

A GVB wavefunction can be represented as [3, 20]:
lI"GVB = A [chore\Popen\Ppair] (31)
where W o is a product of doubly occupied orbitals,

Wopen 18 a product of singly occupied orbitals, and

Npair

Poair = | [ (Corhgi(1)9i(2) + Cuahs(1)1(2)) (2(1)B(2)
i=1
= B(1)x(2)). (3:2)

Here, ¢; and ¢,; are orthogonal GVB natural orbitals,
and Cy; and C,; are GVB configuration interaction (CI)
coefficients. This wavefunction leads to the energy
expression [20]:

E= i 2fihi + i(“iﬁ]v + byK)) (3.3)
i ij

where h; = <¢.|h|¢_> (3.4)

Jy = (ilif) = [ 6,0 < v (3)

Ky = (ijlij) = [ ¢;(1 ¢:(1)dv, (3.6)

h,J/(1), and K/(1 ) are one- and two-electron (Coulomb
and exchange) operators, and f;,a;,b; are orbital
occupation coefficients (see Refs. [3, 20] for their
definitions). The variational condition using this energy
expression is:

OE = (3¢,|F'|¢p;) =0 (3.7)

where F' is the Fock operator for the orbital ¢;:

oce

J

Orbitals with the same occupation coefficients, and
therefore the same Fock operator, form a shell.

Several methods have been used to optimize orbitals
of GVB wavefunctions. The standard OCBSE (orthog-
onality constrained basis set expansion) procedure is
based on diagonalizing the Fock matrices corresponding
to each shell [20]. An orbital DIIS method has been
suggested to improve convergence of this method [4].
Another approach is to diagonalize a single combined
Fock matrix. Several possible generalized Fock opera-
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tors are discussed in Ref. [3] together with the use of
DIIS with this approach. Although their suggested
GVB-DIIS Fock operator [3] introduces second-order
mixing, we find that our quasi-Newton optimization
based on the hessian update method of Fisher and
Almlof [12] works more reliably and in fewer iterations.

The general formula for the GVB orbital gradient
(that has to be brought to zero at convergence) is:

O
N ax,’j

9ij = 4Flf - 4F;'§ (39)

which reduces to:

gij = 4E}]' if j = occupied orbital from shell J,
i = virtual orbital (3.10)
gii =0 if orbitals i and j belong to
the same shell (3.11)
gij = 4F; —4F} if i and j are occupied orbitals

from different shells 7 and J.(3.12)

The general formula [3, 8, 21] for the diagonal elements
of the GVB orbital hessian in the MO basis is:
_OE
)
+ 8(aii + aj; — 2a;)(ij]ij) + 4(bii + bjj — 2by)
[Gilj) + jlif)). (3.13)
In the case for which i is a virtual orbital, F/ =0,
a;; = bii = 0, aj; = bij = 0, and Bij,ij becomes:
Bijij = 4F] — 4F; + 4(2a;; + by;) (iflif) + 4by;(iiljj)
(3.14)
Since the (iiljj) =J; and (ij|ij) = K;; matrices corre-
sponding to open shell J and K operators are already

J 1
B — A~ Fy)

Table 4. Comparison of different methods for low-spin ROHF
calculations

Molecule OCBSE DIIS SOSCF
H,CO n — 7x 'A”  Does not converge 10 11
Y atom s*d' °D Does not converge 8

Table 5. Comparison of three MCSCF orbital improvement methods®

available in the MO basis as a by-product of the GVB
Fock matrix formation, we can calculate all diagonal
hessian elements exactly, except those that correspond to
core-virtual rotations. In the case for which j is doubly
occupied and i is a virtual orbital (a;; = 2,b;; = —1):

Bijyj = 4F] — 4F3, + 4(3(ijlij) — (il j)))- (3.15)

It would require additional integral transformation work
to get the two-electron integrals in (3.15), and therefore
we neglect these terms. Fortunately, the neglected terms
are much smaller than the remaining part
By = 4F;] — AF; (3.16)
which is the same expression we use in the case of closed
shell RHF. Note that all terms are, however, important
for hessian elements corresponding to core—pair, pair—
pair, and pair—virtual rotations, and these are calculated
exactly. As in the case of RHF, we perform one single
combined Fock matrix diagonalization on the first
iteration to provide a better initial orbital hessian for
our approximate second order (SOSCF) method.

Several examples of GVB calculations are given in
Table 3. The middle column of the table represents
the original one-pair GVB-DIIS* implemented in
GAMESS several years ago, while the multi-pair results
are obtained from our implementation of the GVB-DIIS
multishell Fock operator method given in Ref. [3]. GVB
wavefunctions can be difficult to converge, and each of
the three methods fails from time to time. We find,
however, that the approximate second order method is
the most successful in converging the majority of GVB
cases we have tried.

The energy formula (3.3), as well as the gradient (3.9)
and hessian (3.13) formulae can be also used for different
kinds of low spin ROHF calculations by using the ap-
propriate coefficients f;, a;;, and b;;. GAMESS contains
values of these coefficients for some cases of singly oc-
cupied orbitals, and they can be input for other cases of
partial orbital occupancies. Both the DIIS method based
on a single combined Fock matrix and the approximate
second order method work very successfully for all kinds
of low spin ROHF calculations. Two examples are
shown in Table 4.

Molecule® 2nd order method Ist order method Approx. 2nd order
Iterations Time (s) Iterations Time (s) Iterations Time (s)
SiH, 7 18 23 25 12 13
NsF 8 333 31 270 16 145
C4Hy 7 1398 12 496 12 441
CH;AsNCH; 9 5608 34 2432 14 1194
7-azaindole - - 14 15,018 9 10,098

4 CPU timings for these runs are taken on 42 MHz model 350 IBM RS/6000 workstation

® The MCSCF (n, m) examples are complete active spaces with n electrons in m orbitals: (1) MCSCF(6,6)/6-31G (d, p) calculation of triplet
SiH, (29 AOs, 51 CSFs); (2) MCSCF(6,6)/6-31G(d) calculation of cyclic isomer of N3F (60 AOs, 92 CSFs); (3) MCSCF (4,4)/6-31 ++ G (d,
p) ground state of C4Hy (100 AOs, 12 CSFs); (4) MCSCF(4,4)/DZP for CH3-As=N-CHj; compound (103 AOs, 12 CSFs); (5)
MCSCF(10,9)/DZP for 7-azaindole (165 AOs, 5292 CSFs). The job is impossible to run with the exact second order program because of

memory requirements



5 MCSCF wavefunctions

The approximate second order update method is also
implemented for the orbital improvement step for
MCSCF wavefunction optimization. Space precludes a
full review of all previously proposed MCSCF optimi-
zation schemes here. Early first order methods based on
the Generalized Brillouin Theorem [22-24] were abando-
ned by most workers with the advent of second-order
Newton-Raphson methods [25-27]. Recently a Renor-
malized Fock Operator approach based on diagonal-
ization of a matrix of single excitation matrix elements
has been proposed by Meier and Staemmler [28]. This
method exhibits first order convergence, and has recently
been implemented in HONDOS8 by Dupuis et al. [29].
This code served as the basis of our approximate second
order MCSCF scheme.

The MCSCF wavefunction ¥ is a superposition of
electronic configurations ®g:

Yaicser = Z Ax Dk, (4.1)
X

where Ag are the CI coefficients. Typically, many of the
orbitals can be constrained to be doubly occupied in all
configurations — these are core (or inactive) orbitals and
will be denoted i, j, k. Active orbitals are allowed to have
variable occupation numbers and are denoted ¢, u, v, w.
Virtual orbitals are those that are empty in all config-
urations, and are denoted a,b,c. We use the notation
p,q,r,s for general orbitals.

The energy expression for an MCSCF wavefunction
is:

E= Z/pthqu erqm(pqhs

pqrv

(4.2)

where 7, and T, pars Are the elements of one- and two-
body den51ty matrices, depending on Ag. The one- and
two- electron integrals %,, and (pg|rs) depend on the
orbitals. The optimization of CI coefficients and molec-
ular orbitals may be separated, or unfolded, into two
steps: solving the secular equation for Ak, followed by
some sort of orbital improvement scheme.

The first order method suggested for MCSCF orbital
improvement by Meier and Staemmler [28] and imple-
mented in HONDO by Dupuis et al. [29] has many
advantages. Although it requires more iterations to
converge than second order (Newton-Raphson) meth-
ods, the time needed for each iteration is much less.
Each macroiteration in the first order algorithm includes
several microiterations which skip the CI step and part
of the integral transformation. Each microiteration [29]
consists of diagonalization of an approximate Fock
matrix which is formed using old density matrices and
partially updated two-electron integrals. The fairly
numerous microiterations in the first order scheme add a
modest, but non-negligible, amount of time to each
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macroiteration. In contrast, the high cost of the full
second order method comes from the construction of
the orbital hessian matrix which requires (pf|qu) and
(pq|tu) types of molecular integrals with two indices p, ¢
running over the entire orbital space. Only a single
general orbital index needs to be transformed in order to
construct the Lagrangian matrix for the first order
MCSCF. Of course, another problem associated with
using second order methods is storage of the orbital
hessian matrix.

The method we have implemented in GAMESS is an
attempt to use all the advantages of the first order
MCSCF method, while also introducing some features
of the second order approach. Again, we construct an
approximate initial diagonal hessian and use the update
procedure suggested by Fisher and Almlof [12]. The re-
sulting convergence behavior is not, of course, as good
as that of an exact Newton-Raphson method, but is
better than that of a first order method.

Our implementation of the approximate second order
method in GAMESS uses part of the first order MCSCF
program written by Dupuis for HONDO [29]. The
Lagrangian matrix G calculated by the first order code is
used to construct the orbital gradient vector. The
components of the orbital gradient corresponding to
core-virtual (a), active-virtual (b), and core-active (c)
rotations are:

Gia = aaxEm = 4(F,;7" + Faa,-d) = Gy (4.3a)
Yra aXta =2 Z VouF ¢ 42 g;vl“mw(auWw) =Gy
: (4.3b)
o :j _ 4o 4 pey lz T
+ ) Tou(iufow) | = Gy — Gy (4.3¢)

where y and I’ are the one- and two-body density
matrices, and F°"¢ and F*' are two Fock type matrices:

core

FEe = hyy + > [2( pall) — ( pklgh) (44
k

act

AC 1
FAt =", [(pquv) =5 (pulqv) .

u,v

(4.5)

Explicit expressions for the MCSCF orbital hessian in
terms of two-electron integrals and density matrix ele-
ments are given in Ref. [26]. The exact formulae for di-
agonal orbital hessian elements are:

O’E

Bia,ia = @
ia

— (R + Fi) = 4(F™ + F)

+ 4[3(ailai) — (aalii)] (4.6a)
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azE ‘ore
Bta,ta = - 27;1 ere 2 Z Ytu F;;
u

a2,
-2 Z Ty (2ut|ow)

u,v,w

+2 Z{th(aamv) + 2Ty (av|au) }

u,v

(4.6b)
azE core act core act
Biis :@ = 4(Fn + £ ) - 4<Fii + F; )
+ 29, F57 =2 Z V'™ =2 Z Lo (tulow)
u u,o,w
+2°) {T o (uo]i) + 2T g (uifoi) }
u,v
+ 4 {(Sn — ) Builti) — (aulii)]}.
u
(4.6¢c)

No active-active hessian elements are shown, as we
restrict our method to complete active spaces. In the
framework of the first order MCSCF approach [29], an
integral transformation is performed only for £, Fa!,
and (pulvw) types of integrals with only one general
index p running through all orbital space, and three
other indices over active orbitals only. Accordingly, we
ignore those terms of the above expressions that contain
two-electron integrals with two non-active indices. The
truncated diagonal hessian contains only F°"¢ and F%!
matrix elements and (fu|vw) integrals with all indices in
the active space. This approximation is satisfactory for
Bisi. hessian elements, since the last term is small
compared with the first two. In the case of By, ,, and B;,;
elements, the last terms may be quite substantial.
Ignoring these terms may result in negative signs for
some of the hessian elements. This causes severe
convergence problems when starting a Newton-Raphson
optimization from such an initial hessian.

To improve this situation, we add 2y,F%" to By, and
2y,Fi to By hessian elements. In the 11m1t of active
orbital ¢ becoming weakly occupied (y, — 0), the final
term of (4.6b) and 2y,F%" both vanish. In the limit of
active orbital ¢ becommg nearly filled (y,, — 2, Ty —
29ur T = = 3%0), 202" becomes identical to the
final term of (4.6b). Similarly, in the limit # — doubly
occupied the two final terms in (4.6c) reduce to the same
expression as 2y,Fi“. The 2y,F*" terms prove to be a
satisfactory compensation for the exact terms and pro-
vide a positive definite starting hessian for use with the
quasi-Newton update procedure. The resulting diagonal
hessian used to start the approximate second order
MCSCEF orbital improvement is therefore calculated as
follows:

Buuis = 4(E™ + Fi) -

B ta = 2%th”€ 2 Z ytuFtiore -2 Z rturw(tu|vw)

u,v,w

AR + R (4.72)

+ 2y, Fe (4.7b)

Birie =4(F,” + FaCt) —4(F" + Fad) + 29,657
~ 2 e = 23 T (aufow) + 29, F.

u,o,w

(4.7¢)

A previous attempt to reduce the amount of work in
the integral transformation by approximating the orbital
hessian has been made by Camp et al. [30]. These
workers made the same approximation of dropping the
final term of (4.6a), but calculated sufficient integrals
with two virtual indices to evaluate the final terms of
(4.6b) and (4.6¢c). Our approach is to transform only one
virtual index, requiring the additional approximations
just described.

Since very little additional work is required to con-
struct the approximate diagonal hessian and it is done
only on the initial iteration, the cost of each quasi-
Newton iteration is less than that of one first order
macroiteration, which consists of several Fock matrix
diagonalizations (microiterations) [28, 29]. The conver-
gence rate is also better than that of the first order
method. As a result, the approximate second order
method is very fast and useful for MCSCF calculations
of very large molecular systems.

Table 5 shows several examples [31] of MCSCF
calculations using three methods for orbital improve-
ment: (1) an exact second order method with the full
orbital hessian matrix calculated on each iteration; (2) a
first order MCSCF method based on effective Fock
matrix diagonalization, supplemented by DIIS conver-
gence acceleration [29]; (3) the approximate second
order method described above. As can be seen from
Table 5, the approximate second order approach pro-
vides substantial savings of computer time. Note that
the final example is a MCSCF(10,9) calculation of
7-azaindole (C7N,Hg, 165 AOs) which proved impossible
to do with the exact second order program because
insufficient memory was available. About 22,000,000
words of memory are required for the orbital update
procedure with the exact Newton-Raphson scheme, but
fewer than 1,000,000 words are needed in the case of
the approximate quasi-Newton approach. The exact
second order method 1is, however, preferable for
MCSCEF calculations with large numbers of configura-
tions, but small basis sets, since in this case the CI part
(solution for Ag’s) is more time consuming than the
orbital improvement part, and the least number of
iterations is desirable.

6 Conclusion

We have demonstrated an efficient way to optimize
molecular orbitals for different types of wavefunctions
(RHF, ROHF, GVB, and MCSCF) by extending the
approximate second order method with a diagonal
hessian update procedure due to Fisher and Alml6f.
The algorithm is quite simple, and it is remarkable that
essentially the same process can be used to optimize all
these classes of wavefunctions. Details relating to our
implementation, and explicit formulae for the exact



orbital gradient and the approximate diagonal orbital
hessian have been presented for each kind of wavefunc-
tion. The method is faster than the standard diagonal-
ization techniques used for RHF and GVB. Its conver-
gence properties (number of iterations) are comparable
to that of DIIS accelerated SCF methods, but the time
needed for solving the HF equations is about three times
less. In addition, the method eliminates the traditional
diagonalization step (except for the final orbital can-
onicalization) which is not easily parallelizable. For
MCSCEF, the approximate second order orbital update is
trivial compared to the cost of the orbital gradient, and
convergence rates are intermediate between the Renor-
malized Fock Operator first order method and the exact
second order approach.
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